Paper “On generalised subnormal subgroups of finite groups” published in Math. Nachr.

The paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

has appeared in Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). It is available through

http://dx.doi.org/10.1002/mana.201200029

See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparecido en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparegut en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Al final se’n pot veure el resum.

 

Abstract:

Let F be a formation of finite groups. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. A subgroup U of a finite group G is called a K-F-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or F-normal in Ui, for i = 1, 2, …, n. The K-F-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-F-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; F-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17

 

https://permut.blogs.uv.es/2013/04/02/paper-on-generalised-subnormal-subgroups-of-finite-groups/