Paper “On the intersection of certain maximal subgroups of a finite group” to appear in J. Group Theory

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

Adolfo Ballester-Bolinches, James C. Beidleman, Hermann Heineken, Matthew F. Ragland, Jack Schmidt

On the intersection of certain maximal subgroups of a finite group

J. Group Theory, in press

http://dx.doi.org/10.1515/jgt-2013-0052

Abstract:  Let $\Delta(G)$ denote the intersection of all non-normal maximal subgroups of a group G. We introduce the class of T2-groups which are defined as the groups G for which $G/\Delta(G)$ is a T-group, that is, a group in which normality is a transitive relation. Several results concerning the class T2 are discussed. In particular, if G is a solvable group, then Sylow permutability is a transitive relation in G if and only if every subgroup H of G is a T2-group such that the nilpotent residual of H is a Hall subgroup of H.