Paper “On the intersection of certain maximal subgroups of a finite group” published in J. Group Theory

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

Adolfo Ballester-Bolinches, James C. Beidleman, Hermann Heineken, Matthew F. Ragland, Jack Schmidt

On the intersection of certain maximal subgroups of a finite group

J. Group Theory, 17 (2014), 705–715

http://dx.doi.org/10.1515/jgt-2013-0052

Abstract:  Let $\Delta(G)$ denote the intersection of all non-normal maximal subgroups of a group G. We introduce the class of T2-groups which are defined as the groups G for which $G/\Delta(G)$ is a T-group, that is, a group in which normality is a transitive relation. Several results concerning the class T2 are discussed. In particular, if G is a solvable group, then Sylow permutability is a transitive relation in G if and only if every subgroup H of G is a T2-group such that the nilpotent residual of H is a Hall subgroup of H.