Paper “Square-free class sizes in products of groups” published in J. Algebra

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

M. J. Felipe, A. Martínez Pastor, and V. M. Ortiz-Sotomayor

Square-free class sizes in products of groups

J. Algebra, 491:190–206, 2017

https://doi.org/10.1016/j.jalgebra.2017.08.007

Abstract

We obtain some structural properties of a factorised group G=AB, given that the conjugacy class sizes of certain elements in AB are not divisible by , for some prime p. The case when G=AB is a mutually permutable product is especially considered.

2010 Mathematical Subject Classification: 20D10, 20D40, 20E45

Keywords: Finite groups, Soluble groups, Products of subgroups, Conjugacy classes

 

Paper “Mutually permutable products and conjugacy classes” to appear in Monatsh. Math.

The following paper has been accepted for publication. We will inform about the publication details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches, John Cossey, Yangming Li

Mutually permutable products and conjugacy classes

Monatsh. Math.

http://dx.doi.org/10.1007/s00605-012-0411-z

Abstract: The question of how certain arithmetical conditions on the lengths of the conjugacy classes of a finite group G influence the group structure has been studied by several authors with many results available. The purpose of this paper is to analyse the restrictions imposed by the lengths of the conjugacy classes of some elements of the factors of a finite group G = G 1G2 · · · Gr , which is the product of the pairwise mutually permutable subgroups G 1, G 2, . . . , Gr , on its structure. Some earlier results appear as corollaries of our main theorems.

Keywords: Finite groups, Mutually permutable products, Conjugacy classes.
Mathematics Subject Classification: 20D10, 20D20, 20D40, 20E45