Paper “On the p-length of some finite p-soluble groups” published in Israel J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Ramón Esteban-Romero, Luis M. Ezquerro

On the p-length of some finite p-soluble groups

Israel J. Math., 204(1) (2014), 359–371

http://dx.doi.org/10.1007/s11856-014-1095-y

Abstract

The main aim of this paper is to give structural information of a finite group of minimal order belonging to a subgroup-closed class of finite groups and whose p-length is greater than 1, p a prime number. Alternative proofs and improvements of recent results about the influence of minimal p-subgroups on the p-nilpotence and p-length of a finite group arise as consequences of our study.

Paper “On the p-length of some finite p-soluble groups” to appear in Israel J. Math.

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

A. Ballester-Bolinches, R. Esteban-Romero, L. M. Ezquerro

On the p-lenght of some finite p-soluble groups

Israel J. Math., in press

http://dx.doi.org/10.1007/s11856-014-1095-y

We will inform about the publication details.

Informaremos sobre los detalles de la publicación.

N’informarem sobre els detalls de la publicació.

 

Abstract:
The main aim of this paper is to give structural information of a finite group of minimal order belonging to a subgroup-closed class of finite groups and whose p-length is greater than 1, p a prime number. Alternative proofs and improvements of recent results about the influence of minimal p-subgroups on the p-nilpotence and p-length of a finite group
arise as consequences of our study.

Paper “On subgroups of hypercentral type of finite groups” published in Israel J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, Luis M. Ezquerro, Alexander N. Skiba

On subgroups of hypercentral type of finite groups

Israel J. Math., 199 (2014), 259–265

http://dx.doi.org/10.1007/s11856-013-0030-y

Abstract

The main purpose of this paper is to analyze the influence on the structure of a finite group of some subgroups lying in the hypercenter. More precisely, we prove the following: Let

Paper “On subgroups of hypercentral type of finite groups” to appear in Israel J. Math.

The following paper has been accepted for publication. We will inform about the bibliographical details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches, Luis M. Ezquerro, Alexander N. Skiba

On subgroups of hypercentral type of finite groups

Israel J. Math.

http://dx.doi.org/10.1007/s11856-013-0030-y

Abstract

The main purpose of this paper is to analyze the influence on the structure of a finite group of some subgroups lying in the hypercenter. More precisely, we prove the following: Let F be a Baer-local formation. Given a group G and a normal subgroup E of G, let ZF (G) contain a p-subgroup A of E which is maximal being abelian and of exponent dividing pk, where k is some natural number, k = 1 if p = 2 and the Sylow 2-subgroups of E are non-abelian. Then E/ O p (E) ≤ ZF(G/ Op (E)) (Theorem 1). Some well-known results turn out to be consequences of this theorem.