Paper “Mutually permutable products and conjugacy classes” published in Monatsh. Math.

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, John Cossey, Yangming Li

Mutually permutable products and conjugacy classes

Monatsh. Math., 170, 305-310 (2013)

http://dx.doi.org/10.1285/i15900932v33n1p89

Abstract

A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p-subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure

Keywords: Finite group, Permutability, S-permutability, Maximal subgroups,
Minimal subgroups

Mathematics Subject Classification (2010): 20D05, 20D10, 20D35, 20F17

Paper “On S-permutably embedded subgroups of finite groups” to appear in Monatsh. Math.

The following paper has been accepted for publication. We will inform about the publication details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches,  Yangming Li

On S-permutably embedded subgroups of finite groups

Monatsh. Math.

http://dx.doi.org/10.1007/s00605-013-0497-y

Abstract: A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p -subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure.

Keywords: Finite groups, permutability, S-permutability, maximal subgroups, minimal subgroups
Mathematics Subject Classification: 20D05, 20D10, 20D35, 20F17

Paper “On S-permutably embedded subgroups of finite groups” to appear in Monats. Math.

The paper

A. Ballester-Bolinches, Yangming Li

On S-permutably embedded subgroups of finite groups

will be published in Monatshefte für Mathematik. It is available through

http://dx.doi.org/10.1007/s00605-013-0497-y

We will inform about the publication details. See abstract below.

 

El artículo

A. Ballester-Bolinches, Yangming Li

On S-permutably embedded subgroups of finite groups

será publicado en Monatshefte für Mathematik. Está disponible en

http://dx.doi.org/10.1007/s00605-013-0497-y

Informaremos sobre los detalles de publicación. Véase el resumen al final.

 

 

L’article

A. Ballester-Bolinches, Yangming Li

On S-permutably embedded subgroups of finite groups

serà publicat en Monatshefte für Mathematik. Està disponible a

http://dx.doi.org/10.1007/s00605-013-0497-y

Informarem sobre els detalls de publicació. Vegeu el resum al final.

Abstract

A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p-subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure

Keywords: Finite group, Permutability, S-permutability, Maximal subgroups,
Minimal subgroups

Mathematics Subject Classification (2000): 20D05, 20D10, 20D35, 20F17