Paper “On p-nilpotency of hyperfinite groups” published in Monatsh. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, S. Camp-Mora, and F. Spagnuolo

On p-nilpotency of hyperfinite groups

Monatsh. Math., 176(4) (2015), 497–502

http://dx.doi.org/10.1007/s00605-014-0633-3

Abstract

Let p be a prime. We say that class X of hyperfinite p-groups determines p-nilpotency locally if every finite group G with a Sylow p-subgroup P in X is p-nilpotent if and only if N_G(P) is p-nilpotent. The results of this paper improve a recent result of Kurdachenko and Otal and show that if a hyperfinite group G has a pronormal Sylow p-subgroup in X, then G is p-nilpotent if and only if N_G(P) is p-nilpotent provided that X is closed under taking subgroups and epimorphic images. If X is not closed under taking epimorphic images, we have to impose local p-solubility to G. In this case, the hypothesis of pronormality can be removed.

2010 Mathematics subject classification: 20E15, 20F19, 20F22

Keywords: locally finite group; hyperfinite group; p-nilpotency

Paper “Groups whose primary subgroups are normal sensitive” published in Monatsh. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, and Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monatsh. Math., 175(2) (2014), 175–185

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract

A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H,N=H∩NG. In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

2010 Mathematics subject classification: 20E07; 20E15; 20F22; 20F50

Keywords: Locally finite group; Normal sensitivity; Primary subgroup; PST-group; T-group

Paper “Groups whose primary subgroups are normal sensitive” to appear in Monatsh. Math.

The following paper is now available on line. We will announce the publication details.

El siguiente artículo está disponible en línea. Anunciaremos los detalles bibliográficos.

El següent article està disponible en línia. N’anunciarem els detalls bibliogràfics.

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monats. Math.

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract: A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H, N = H ∩ N^G . In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

Keywords: Locally finite group, Normal sensitivity, Primary subgroup, PST-group, T-group

Mathematics Subject Classification (2000):  20E07, 20E15, 20F22, 20F50

Paper “Mutually permutable products and conjugacy classes” published in Monatsh. Math.

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, John Cossey, Yangming Li

Mutually permutable products and conjugacy classes

Monatsh. Math., 170, 305-310 (2013)

http://dx.doi.org/10.1285/i15900932v33n1p89

Abstract

A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p-subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure

Keywords: Finite group, Permutability, S-permutability, Maximal subgroups,
Minimal subgroups

Mathematics Subject Classification (2010): 20D05, 20D10, 20D35, 20F17

Paper “On S-permutably embedded subgroups of finite groups” to appear in Monatsh. Math.

The following paper has been accepted for publication. We will inform about the publication details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches,  Yangming Li

On S-permutably embedded subgroups of finite groups

Monatsh. Math.

http://dx.doi.org/10.1007/s00605-013-0497-y

Abstract: A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p -subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure.

Keywords: Finite groups, permutability, S-permutability, maximal subgroups, minimal subgroups
Mathematics Subject Classification: 20D05, 20D10, 20D35, 20F17

Paper “Mutually permutable products and conjugacy classes” to appear in Monatsh. Math.

The following paper has been accepted for publication. We will inform about the publication details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches, John Cossey, Yangming Li

Mutually permutable products and conjugacy classes

Monatsh. Math.

http://dx.doi.org/10.1007/s00605-012-0411-z

Abstract: The question of how certain arithmetical conditions on the lengths of the conjugacy classes of a finite group G influence the group structure has been studied by several authors with many results available. The purpose of this paper is to analyse the restrictions imposed by the lengths of the conjugacy classes of some elements of the factors of a finite group G = G 1G2 · · · Gr , which is the product of the pairwise mutually permutable subgroups G 1, G 2, . . . , Gr , on its structure. Some earlier results appear as corollaries of our main theorems.

Keywords: Finite groups, Mutually permutable products, Conjugacy classes.
Mathematics Subject Classification: 20D10, 20D20, 20D40, 20E45