Paper “Some Results on Products of Finite Groups” published in Bull. Malays. Math. Sci. Soc.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

Adolfo Ballester-Bolinches, Luis M. Ezquerro, A. A. Heliel, and M. M. Al-Shomrani

Some results on products of finite groups

Bull. Malays. Math. Sci. Soc., 40(3):1341–1351, 2017

https://doi.org/10.1007/s40840-015-0111-7

Abstract

Subgroups A and B of a finite group are said to be mutually permutable (respectively, M-permutable and sn-permutable) if A permutes with every subgroup (respectively, every maximal subgroup and every subnormal subgroup) of B and viceversa. If every subgroup of A permutes with every subgroup of B, then the product is said to be totally permutable. These kinds of products have received much attention in the last twenty years. The aim of this paper is to analyse the behaviour of finite pairwise mutually permutable, mutually M-permutable, mutually sn-permutable and totally permutable products with respect to certain classes of groups including the supersoluble groups, widely supersoluble groups, and also the classes of PST-, PT– and T-groups.

2010 Mathematics Subject Classification: 20D10, 20D20, 20D40

Keywords: Finite group, Permutability, Products of groups,  Supersoluble group

 

 

 

Paper “On S-Semipermutable Subgroups and Soluble PST-Groups” published in Mediterr. J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

R. A. Hijazi, W. M. Fakieh, A. Ballester-Bolinches, and J. C. Beidleman

On S-semipermutable subgroups and soluble PST-groups

Mediterr. J. Math., 14(2):Art. 87, 6, 2017

https://doi.org/10.1007/s00009-017-0893-y

Abstract

All groups presented in this article are finite. Using several permutability embedding properties, a number of new characterisations of soluble PST-groups are studied.

2010 Mathematics subject classification:  20D10; 20D20; 20F16

Keywords: Finite group; Permutability; S-Semipermutability

 

Paper “A note on finite groups with the maximal permutiser condition” published in Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

Adolfo Ballester-Bolinches, John Cossey, and ShouHong Qiao.

A note on finite groups with the maximal permutiser condition.

Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM, 110(1):247–250, 2016

https://doi.org/10.1007/s13398-015-0232-8

Abstract

A finite group G is said to satisfy the maximal permutiser condition, or G is an MPC-group, if for any maximal subgroup M of G, there is an element xGM such that G=Mx⟩. In this note, we show that the class of MPC-groups is not residually closed and so it is not a formation. It answers a question posed in Qiao et al. (J Algebra Appl 12(5):1250217, 2013). Following Ballester-Bolinches and Esteban-Romero (Commun Algebra 30(12):5757–5770, 2002), a finite group G is said to be a QP-group if G is soluble and if F is a non-cyclic chief factor of G, then F has order 4 and G induces the full automorphism group in F. We prove that the class of all QP-groups is the unique largest formation contained in the class of all MPC-groups. A detailed description of the MPC-groups is also given.

2010 Mathematics Subject Classification: 20D10, 20D15

Keywords: Finite group, Soluble group, Permutability, Formations

Paper “Some subgroup embeddings in finite groups: A mini-review” published in J. Adv. Res.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

Some subgroup embeddings in finite groups: A mini-review

J. Adv. Res., 6(3) (2015), 359–362

http://dx.doi.org/10.1016/j.jare.2014.04.004

Abstract

In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied.

Keywords and phrases: Finite group; Permutability; S-permutability; Semipermutability; Primitive subgroup; Quasipermutable subgroup

Paper “Some subgroup embeddings in finite groups” accepted for publication in J. Adv. Res.

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

Some subgroup embeddings in finite groups

J. Adv. Res., in press

http://dx.doi.org/10.1016/j.jare.2014.04.004

We will inform about the publication details.

Informaremos sobre los detalles de la publicación.

N’informarem sobre els detalls de la publicació.

 

Abstract: In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied.

2010 Mathematics subject classification:

20D05, 20D10, 20F16

Keywords: Finite group; Permutability; S-permutability; Semipermutability; Primitive subgroup; Quasipermutable subgroup.

 

Paper “Prefactorized subgroups in pairwise mutually permutable products” published in Ann. Mat. Pura Appl.

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, J. C. Beidleman, H. Heineken, M. C. Pedraza-Aguilera

Prefactorized subgroups in pairwise mutually permutable subgroups

Ann. Math .Pura Appl., 192(6), 1043-1057 (2013)

http://dx.doi.org/10.1007/s10231-012-0257-y

Abstract

We continue here our study of pairwise mutually and pairwise totally permutable products. We are looking for subgroups of the product in which the given factorization induces a factorization of the subgroup. In the case of soluble groups, it is shown that a prefactorized Carter subgroup and a prefactorized system normalizer exist. A less stringent property have F-residual, F-projector and F-normalizer for any saturated formation F including the supersoluble groups.

MSC: 20D10, 20D20

Keywords: Finite group, Permutability, Factorization, Saturated formation.

Paper “Mutually permutable products and conjugacy classes” published in Monatsh. Math.

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, John Cossey, Yangming Li

Mutually permutable products and conjugacy classes

Monatsh. Math., 170, 305-310 (2013)

http://dx.doi.org/10.1285/i15900932v33n1p89

Abstract

A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p-subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure

Keywords: Finite group, Permutability, S-permutability, Maximal subgroups,
Minimal subgroups

Mathematics Subject Classification (2010): 20D05, 20D10, 20D35, 20F17

Paper “On S-permutably embedded subgroups of finite groups” to appear in Monatsh. Math.

The following paper has been accepted for publication. We will inform about the publication details.

El siguiente artículo ha sido aceptado para su publicación. Informaremos sobre los detalles bibliográficos.

El següent article ha sigut acceptat per a la seua publicació. N’informarem sobre els detalls bibliogràfics.

A. Ballester-Bolinches,  Yangming Li

On S-permutably embedded subgroups of finite groups

Monatsh. Math.

http://dx.doi.org/10.1007/s00605-013-0497-y

Abstract: A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p -subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure.

Keywords: Finite groups, permutability, S-permutability, maximal subgroups, minimal subgroups
Mathematics Subject Classification: 20D05, 20D10, 20D35, 20F17

Paper “On S-permutably embedded subgroups of finite groups” to appear in Monats. Math.

The paper

A. Ballester-Bolinches, Yangming Li

On S-permutably embedded subgroups of finite groups

will be published in Monatshefte für Mathematik. It is available through

http://dx.doi.org/10.1007/s00605-013-0497-y

We will inform about the publication details. See abstract below.

 

El artículo

A. Ballester-Bolinches, Yangming Li

On S-permutably embedded subgroups of finite groups

será publicado en Monatshefte für Mathematik. Está disponible en

http://dx.doi.org/10.1007/s00605-013-0497-y

Informaremos sobre los detalles de publicación. Véase el resumen al final.

 

 

L’article

A. Ballester-Bolinches, Yangming Li

On S-permutably embedded subgroups of finite groups

serà publicat en Monatshefte für Mathematik. Està disponible a

http://dx.doi.org/10.1007/s00605-013-0497-y

Informarem sobre els detalls de publicació. Vegeu el resum al final.

Abstract

A subgroup A of a finite group G is said to be S-permutably embedded in G if for each prime p dividing the order of A, every Sylow p-subgroup of A is a Sylow p-subgroup of some S-permutable subgroup of G. In this paper we determine how the S-permutable embedding of several families of subgroups of a finite group influences its structure

Keywords: Finite group, Permutability, S-permutability, Maximal subgroups,
Minimal subgroups

Mathematics Subject Classification (2000): 20D05, 20D10, 20D35, 20F17

 

Publication data for “Maximal subgroups and PST-groups” in Cent. Eur. Math. J.

Central European Journal of MathematicsWe now have the issue and page numbers for the paper we mentioned in http://permut.blogs.uv.es/2013/03/15/paper-maximal-subgroups-and-pst-groups/.

Adolfo Ballester-Bolinches, James C. Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig

Maximal subgroups and PST-groups

Centr. Eur. J. Math., 11(6), 2013, 1078-1082,

available on http://dx.doi.org/10.2478/s11533-013-0222-z.

Abstract:

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions of Kaplan’s results, which enables a better understanding of the relationships between these classes.

MSC:  20D05, 20D10, 20E15, 20E28, 20F16
Keywords: Finite groups • Permutability • Sylow-permutability • Maximal subgroups • Supersolubility

(c) Versita Sp. z. o. o. and Springer