Paper “Groups whose primary subgroups are normal sensitive” published in Monatsh. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, and Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monatsh. Math., 175(2) (2014), 175–185

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract

A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H,N=H∩NG. In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

2010 Mathematics subject classification: 20E07; 20E15; 20F22; 20F50

Keywords: Locally finite group; Normal sensitivity; Primary subgroup; PST-group; T-group

Paper “Groups whose primary subgroups are normal sensitive” to appear in Monatsh. Math.

The following paper is now available on line. We will announce the publication details.

El siguiente artículo está disponible en línea. Anunciaremos los detalles bibliográficos.

El següent article està disponible en línia. N’anunciarem els detalls bibliogràfics.

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monats. Math.

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract: A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H, N = H ∩ N^G . In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

Keywords: Locally finite group, Normal sensitivity, Primary subgroup, PST-group, T-group

Mathematics Subject Classification (2000):  20E07, 20E15, 20F22, 20F50

Paper “Algorithms for permutability in finite groups” published in Cent. Eur. J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero

Algorithms for permutability in finite groups

Cent. Eur. J. Math., 11 (11), 1914-1922 (2013).

Abstract: In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

Keywords:  Finite group • Permutable subgroup • S-permutable subgroup • Dedekind group • Iwasawa group • T-group • PT-group • PST-group • Algorithm
Mathematics Subject Classification (2010):  20D10, 20D20, 20-04

http://dx.doi.org/10.2478/s11533-013-0299-4

 

Paper “On generalised subnormal subgroups of finite groups” published in Math. Nachr.

The paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

has appeared in Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). It is available through

http://dx.doi.org/10.1002/mana.201200029

See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparecido en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparegut en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Al final se’n pot veure el resum.

 

Abstract:

Let F be a formation of finite groups. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. A subgroup U of a finite group G is called a K-F-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or F-normal in Ui, for i = 1, 2, …, n. The K-F-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-F-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; F-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17

 

https://permut.blogs.uv.es/2013/04/02/paper-on-generalised-subnormal-subgroups-of-finite-groups/

Paper “On generalised subnormal subgroups of finite groups” to appear in Math. Nachr.

Mathematische NachrichtenThe paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

will be published in Mathematische Nachrichten. It is available through

http://dx.doi.org/10.1002/mana.201200029

We will inform about the final publication details. See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

será publicado en Mathematische Nachrichten. Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Informaremos sobre los detalles bibliográficos cuando estén disponibles. Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

serà publicat en Mathematische Nachrichten. Ja està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Informarem sobre els detalls bibliogràfics quan estiguen disponibles. Al final es pot veure el resum.

 

Abstract:

Let equation image be a formation of finite groups. A subgroup M of a finite group G is said to be equation image-normal in G if G/CoreG(M) belongs to equation image. A subgroup U of a finite group G is called a K-equation image-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or equation image-normal in Ui, for i = 1, 2, …, n. The K-equation image-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-equation image-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; equation image-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17

 

Publication data for “Maximal subgroups and PST-groups” in Cent. Eur. Math. J.

Central European Journal of MathematicsWe now have the issue and page numbers for the paper we mentioned in http://permut.blogs.uv.es/2013/03/15/paper-maximal-subgroups-and-pst-groups/.

Adolfo Ballester-Bolinches, James C. Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig

Maximal subgroups and PST-groups

Centr. Eur. J. Math., 11(6), 2013, 1078-1082,

available on http://dx.doi.org/10.2478/s11533-013-0222-z.

Abstract:

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions of Kaplan’s results, which enables a better understanding of the relationships between these classes.

MSC:  20D05, 20D10, 20E15, 20E28, 20F16
Keywords: Finite groups • Permutability • Sylow-permutability • Maximal subgroups • Supersolubility

(c) Versita Sp. z. o. o. and Springer

 

Paper “Maximal subgroups and PST-groups” to appear in Cent. Eur. Math. J.

Central European Journal of MathematicsThe paper

Adolfo Ballester-Bolinches, James C. Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig

Maximal subgroups and PST-groups

Centr. Eur. J. Math., in press

is now available on http://dx.doi.org/10.2478/s11533-013-0222-z.

Abstract:

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions of Kaplan’s results, which enables a better understanding of the relationships between these classes.

MSC:  20D05, 20D10, 20E15, 20E28, 20F16
Keywords: Finite groups • Permutability • Sylow-permutability • Maximal subgroups • Supersolubility

(c) Versita Sp. z. o. o. and Springer

We will inform about the volume and issue this paper is officially published.