Paper “Some Local Properties Defining T₀-Groups and Related Classes of Groups” published in Publ. Mat.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, and M. F. Ragland

Some local properties defining T0-groups and related classes of groups

Publ. Mat., 60(1):265–272, 2016

http://projecteuclid.org/euclid.pm/1450818490

Abstract

We call G a Hall_χ-group if there exists a normal nilpotent subgroup N of G for which G/N is an χ-group. We call G a T-group provided G/Φ(G) is a T-group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define Hall_χ-groups and T-groups where χ{T, PT, PST}; the classes PT and PST denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

2010 Mathematical Subject Classification: 20D10, 20D20, 20D35

Keywords: Subnormal subgroup, T-group, PST-group, finite solvable group

 

Paper “On seminormal subgroups of finite groups” published in Rocky Mountain J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, V. Pérez-Calabuig, and M. F. Ragland

On seminormal subgroups of finite groups

Rocky Mountain J. Math., 47(2):419–427, 2017

https://doi.org/10.1216/RMJ-2017-47-2-419

Abstract

All groups considered in this paper are finite. A subgroup H of a group G is said to be seminormal in G if H is normalized by all subgroups K of G such that gcd(|H|,|K|)=1 . We call a group G an MSN-group if the maximal subgroups of all the Sylow subgroups of G are seminormal in G. In this paper, we classify all MSN-groups.

2010 Mathematics Subject Classification: 20D10, 20D15, 20D20

Keywords: Finite group, soluble PST-group,T₀-group, MS-group, MSN-group

 

Paper “Some Characterisations of Soluble SST-Groups” published in Comm. Algebra

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. Ballester-Bolinches, J. C. Beidleman, and M. F. Ragland.

Some characterisations of soluble SST-groups.

Comm. Algebra, 44(4):1821–1827, 2016.

https://doi.org/10.1080/00927872.2015.1027397

Abstract

All groups considered in this paper are finite. A subgroup H of a group G is said to be SS-permutable or SS-quasinormal in G if H has a supplement K in G such that H permutes with every Sylow subgroup of K. Following [6 Chen, X. Y., Guo, W. B. (2014). Finite groups in which SS-permutability is a transitive relation. Acta Math. Hungar. 143(2):466–479.], we call a group G an SST-group provided that SS-permutability is a transitive relation in G, that is, if A is an SS-permutable subgroup of B and B is an SS-permutable subgroup of G, then A is an SS-permutable subgroup of G. The main aim of this paper is to present several characterisations of soluble SST-groups.

2010 Mathematics Subject Classification: Primary 20D10; Secondary 20D15, 20D20

Keywords: BT-group, Finite group, Soluble PST-group, SST-group

Paper “Some subgroup embeddings in finite groups: A mini-review” published in J. Adv. Res.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

Some subgroup embeddings in finite groups: A mini-review

J. Adv. Res., 6(3) (2015), 359–362

http://dx.doi.org/10.1016/j.jare.2014.04.004

Abstract

In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied.

Keywords and phrases: Finite group; Permutability; S-permutability; Semipermutability; Primitive subgroup; Quasipermutable subgroup

Paper “On a class of supersoluble groups” published in Bull. Aust. Math. Soc.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

On a class of supersoluble groups

Bull. Aust. Math. Soc., 90 (2014), 220–226

http://dx.doi.org/10.1017/S0004972714000306

Abstract

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

2010 Mathematics subject classification: primary 20D10; secondary 20D15; 20D20

Keywords and phrases: finite group; soluble PST-group; T0-group; MS-group; BT-group

Paper “On generalised pronormal subgroups of finite groups” published in Glasgow Math. J.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, A. D. Feldman, M. F. Ragland

On generalised pronormal subgroups of finite groups

Glasgow Math. J., 56(3) (2014), 691–703

http://dx.doi.org/10.1017/S0017089514000159

Abstract

For a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug $\mathfrak F$ such that Ux = Ug . Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/Core G(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U 0U 1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui , for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.

2010 Mathematics subject classification: 20D10; 20D35; 20F17

Paper “On the intersection of certain maximal subgroups of a finite group” published in J. Group Theory

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

Adolfo Ballester-Bolinches, James C. Beidleman, Hermann Heineken, Matthew F. Ragland, Jack Schmidt

On the intersection of certain maximal subgroups of a finite group

J. Group Theory, 17 (2014), 705–715

http://dx.doi.org/10.1515/jgt-2013-0052

Abstract:  Let $\Delta(G)$ denote the intersection of all non-normal maximal subgroups of a group G. We introduce the class of T2-groups which are defined as the groups G for which $G/\Delta(G)$ is a T-group, that is, a group in which normality is a transitive relation. Several results concerning the class T2 are discussed. In particular, if G is a solvable group, then Sylow permutability is a transitive relation in G if and only if every subgroup H of G is a T2-group such that the nilpotent residual of H is a Hall subgroup of H.

Paper “On a class of supersoluble groups” accepted for publication in Bull. Aust. Math. Soc.

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

On a class of supersoluble groups

Bull. Aust. Math. Soc., in press

http://dx.doi.org/10.1017/S0004972714000306

We will inform about the publication details.

Informaremos sobre los detalles de la publicación.

N’informarem sobre els detalls de la publicació.

 

Abstract: A subgroup H of a finite group G is said to be S-permutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.
2010 Mathematics subject classification: 20D10, 20D15, 20D20

Keywords: Finite group, soluble PST-group, T_0-group, MS-group, BT-group.

Paper “Some subgroup embeddings in finite groups” accepted for publication in J. Adv. Res.

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

Some subgroup embeddings in finite groups

J. Adv. Res., in press

http://dx.doi.org/10.1016/j.jare.2014.04.004

We will inform about the publication details.

Informaremos sobre los detalles de la publicación.

N’informarem sobre els detalls de la publicació.

 

Abstract: In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied.

2010 Mathematics subject classification:

20D05, 20D10, 20F16

Keywords: Finite group; Permutability; S-permutability; Semipermutability; Primitive subgroup; Quasipermutable subgroup.

 

Paper “On the intersection of certain maximal subgroups of a finite group” to appear in J. Group Theory

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

Adolfo Ballester-Bolinches, James C. Beidleman, Hermann Heineken, Matthew F. Ragland, Jack Schmidt

On the intersection of certain maximal subgroups of a finite group

J. Group Theory, in press

http://dx.doi.org/10.1515/jgt-2013-0052

Abstract:  Let $\Delta(G)$ denote the intersection of all non-normal maximal subgroups of a group G. We introduce the class of T2-groups which are defined as the groups G for which $G/\Delta(G)$ is a T-group, that is, a group in which normality is a transitive relation. Several results concerning the class T2 are discussed. In particular, if G is a solvable group, then Sylow permutability is a transitive relation in G if and only if every subgroup H of G is a T2-group such that the nilpotent residual of H is a Hall subgroup of H.