Paper “On seminormal subgroups of finite groups” published in Rocky Mountain J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, V. Pérez-Calabuig, and M. F. Ragland

On seminormal subgroups of finite groups

Rocky Mountain J. Math., 47(2):419–427, 2017

https://doi.org/10.1216/RMJ-2017-47-2-419

Abstract

All groups considered in this paper are finite. A subgroup H of a group G is said to be seminormal in G if H is normalized by all subgroups K of G such that gcd(|H|,|K|)=1 . We call a group G an MSN-group if the maximal subgroups of all the Sylow subgroups of G are seminormal in G. In this paper, we classify all MSN-groups.

2010 Mathematics Subject Classification: 20D10, 20D15, 20D20

Keywords: Finite group, soluble PST-group,T₀-group, MS-group, MSN-group

 

Paper “Some Characterisations of Soluble SST-Groups” published in Comm. Algebra

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. Ballester-Bolinches, J. C. Beidleman, and M. F. Ragland.

Some characterisations of soluble SST-groups.

Comm. Algebra, 44(4):1821–1827, 2016.

https://doi.org/10.1080/00927872.2015.1027397

Abstract

All groups considered in this paper are finite. A subgroup H of a group G is said to be SS-permutable or SS-quasinormal in G if H has a supplement K in G such that H permutes with every Sylow subgroup of K. Following [6 Chen, X. Y., Guo, W. B. (2014). Finite groups in which SS-permutability is a transitive relation. Acta Math. Hungar. 143(2):466–479.], we call a group G an SST-group provided that SS-permutability is a transitive relation in G, that is, if A is an SS-permutable subgroup of B and B is an SS-permutable subgroup of G, then A is an SS-permutable subgroup of G. The main aim of this paper is to present several characterisations of soluble SST-groups.

2010 Mathematics Subject Classification: Primary 20D10; Secondary 20D15, 20D20

Keywords: BT-group, Finite group, Soluble PST-group, SST-group

Paper “On a class of supersoluble groups” published in Bull. Aust. Math. Soc.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

On a class of supersoluble groups

Bull. Aust. Math. Soc., 90 (2014), 220–226

http://dx.doi.org/10.1017/S0004972714000306

Abstract

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

2010 Mathematics subject classification: primary 20D10; secondary 20D15; 20D20

Keywords and phrases: finite group; soluble PST-group; T0-group; MS-group; BT-group

Paper “On a class of supersoluble groups” accepted for publication in Bull. Aust. Math. Soc.

The following paper has been accepted for publication.

El siguiente artículo ha sido aceptado para su publicación.

El següent article ha sigut acceptat per ser publicat.

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, M. F. Ragland

On a class of supersoluble groups

Bull. Aust. Math. Soc., in press

http://dx.doi.org/10.1017/S0004972714000306

We will inform about the publication details.

Informaremos sobre los detalles de la publicación.

N’informarem sobre els detalls de la publicació.

 

Abstract: A subgroup H of a finite group G is said to be S-permutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.
2010 Mathematics subject classification: 20D10, 20D15, 20D20

Keywords: Finite group, soluble PST-group, T_0-group, MS-group, BT-group.