Defensa tesis doctoral Francesca Spagnuolo 21/02/2017 12.00

Feb
21
12:00

El próximo martes día 21 de febrero de 2017, a las 12.00, se procederá a la defensa de la tesis doctoral de Francesca Spagnuolo titulada «Some results on locally finite groups», dirigida por Adolfo Ballester Bolinches y Francesco de Giovanni, en el salón de grados de la Facultat de Matemàtiques de la Universitat de València.

Estáis todos invitados.

 

Paper “On p-nilpotency of hyperfinite groups” published in Monatsh. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, S. Camp-Mora, and F. Spagnuolo

On p-nilpotency of hyperfinite groups

Monatsh. Math., 176(4) (2015), 497–502

http://dx.doi.org/10.1007/s00605-014-0633-3

Abstract

Let p be a prime. We say that class X of hyperfinite p-groups determines p-nilpotency locally if every finite group G with a Sylow p-subgroup P in X is p-nilpotent if and only if N_G(P) is p-nilpotent. The results of this paper improve a recent result of Kurdachenko and Otal and show that if a hyperfinite group G has a pronormal Sylow p-subgroup in X, then G is p-nilpotent if and only if N_G(P) is p-nilpotent provided that X is closed under taking subgroups and epimorphic images. If X is not closed under taking epimorphic images, we have to impose local p-solubility to G. In this case, the hypothesis of pronormality can be removed.

2010 Mathematics subject classification: 20E15, 20F19, 20F22

Keywords: locally finite group; hyperfinite group; p-nilpotency

Paper “A bound on the p-length of p-solvable groups” published in Glasg. Math. J.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Jon González-Sánchez, Francesca Spagnuolo

A bound on the p-length of p-solvable groups

Glasg. Math. J., 57(1) (2015), 167–171

http://dx.doi.org/10.1017/S0017089514000196

Abstract

Let G be a finite p-solvable group and P a Sylow p-subgroup of G. Suppose that $\gamma_{\ell (p-1)}(P)\subseteq \gamma_r(P)^{p^s}$ for ℓ(p−1) < r + s(p − 1), then the p-length is bounded by a function depending on ℓ.

2010 Mathematics subject classification: primary 20D10; secondary 20D15