# Paper “A note on normal complements for finite groups” published in Bull. Austral. Math. Soc.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Ning Su, Adolfo Ballester-Bolinches, Hangyang Meng.

A note on normal complements for finite groups

Bull. Austral. Math. Soc., 98 (1):109-112, 2018

doi:10.1017/S0004972718000151

Abstract

Assume that G is a finite group and H is a 2-nilpotent Sylow tower Hall subgroup of G such that if x and y are G-conjugate elements of H ∩ G0 of prime order or order 4, then x and y are H-conjugate. We prove hat there exists a normal subgroup N of G such that G = HN and H ∩ N = 1.

2010 Mathematics Subject Classification: primary 20D20; secondary 20D10

Keywords: finite group, conjugation, Hall subgroup, normal complement.

# Paper “On partial CAP-subgroups of finite groups” published in J. Algebra

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Luis M. Ezquerro, Yangming Li, and Ning Su

On partial CAP-subgroups of finite groups

J. Algebra, 431 (2015), 196–208

http://dx.doi.org/10.1016/j.jalgebra.2015.01.035

Abstract

Given a chief factor H/K of a finite group G, we say that a subgroup A of G avoids H/K if H∩A=K∩A; if HA=KA, then we say that A covers H/K. If A either covers or avoids the chief factors of some given chief series of G, we say that A is a partial CAP-subgroup of G. Assume that G has a Sylow p-subgroup of order exceeding pk. If every subgroup of order pk, where k≥1, and every subgroup of order 4 (when pk=2 and the Sylow 2-subgroups are non-abelian) are partial CAP-subgroups of G, then G is p-soluble of p-length at most 1.

2010 Mathematics subject classification: 20D10; 20D20

Keywords: Finite group; Partial CAP-subgroup; p-soluble group; p-length