Paper “A note on Sylow permutable subgroups of infinite groups” published in J. Algebra

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko

A note on Sylow permutable subgroups of infinite groups

J. Algebra, 398, 156-161 (2014)

http://dx.doi.org/10.1016/j.jalgebra.2013.08.042

Abstract: A subgroup A of a periodic group G is said to be Sylow permutable,
or S-permutable, subgroup of G if A P = P A for all Sylow subgroups
P of G. The aim of this paper is to establish the local nilpotency
of the section A^G /Core_G( A) for an S-permutable subgroup A of a
locally finite group G.
MSC: 20E15, 20F19, 20F22
Keywords: Locally finite group, Hyperfinite group, Sylow permutability, Ascendant subgroup

Publication data for “Maximal subgroups and PST-groups” in Cent. Eur. Math. J.

Central European Journal of MathematicsWe now have the issue and page numbers for the paper we mentioned in http://permut.blogs.uv.es/2013/03/15/paper-maximal-subgroups-and-pst-groups/.

Adolfo Ballester-Bolinches, James C. Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig

Maximal subgroups and PST-groups

Centr. Eur. J. Math., 11(6), 2013, 1078-1082,

available on http://dx.doi.org/10.2478/s11533-013-0222-z.

Abstract:

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions of Kaplan’s results, which enables a better understanding of the relationships between these classes.

MSC:  20D05, 20D10, 20E15, 20E28, 20F16
Keywords: Finite groups • Permutability • Sylow-permutability • Maximal subgroups • Supersolubility

(c) Versita Sp. z. o. o. and Springer

 

Paper “Maximal subgroups and PST-groups” to appear in Cent. Eur. Math. J.

Central European Journal of MathematicsThe paper

Adolfo Ballester-Bolinches, James C. Beidleman, Ramón Esteban-Romero, Vicent Pérez-Calabuig

Maximal subgroups and PST-groups

Centr. Eur. J. Math., in press

is now available on http://dx.doi.org/10.2478/s11533-013-0222-z.

Abstract:

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19–25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions of Kaplan’s results, which enables a better understanding of the relationships between these classes.

MSC:  20D05, 20D10, 20E15, 20E28, 20F16
Keywords: Finite groups • Permutability • Sylow-permutability • Maximal subgroups • Supersolubility

(c) Versita Sp. z. o. o. and Springer

We will inform about the volume and issue this paper is officially published.