Paper «On generalised subnormal subgroups of finite groups» to appear in Math. Nachr.

Mathematische NachrichtenThe paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

will be published in Mathematische Nachrichten. It is available through

http://dx.doi.org/10.1002/mana.201200029

We will inform about the final publication details. See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

será publicado en Mathematische Nachrichten. Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Informaremos sobre los detalles bibliográficos cuando estén disponibles. Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

serà publicat en Mathematische Nachrichten. Ja està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Informarem sobre els detalls bibliogràfics quan estiguen disponibles. Al final es pot veure el resum.

 

Abstract:

Let equation image be a formation of finite groups. A subgroup M of a finite group G is said to be equation image-normal in G if G/CoreG(M) belongs to equation image. A subgroup U of a finite group G is called a K-equation image-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or equation image-normal in Ui, for i = 1, 2, …, n. The K-equation image-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-equation image-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; equation image-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17