Paper «On the Prüfer rank of mutually permutable products of abelian groups» published in Ann. Mat. Pura Appl.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, J. Cossey, H. Meng, M. C. Pedraza-Aguilera.
On the Prüfer rank of mutually permutable products of abelian groups
Ann. Mat. Pura Appl. (4), 198(3):811–819, 2019.

doi:10.1007/s10231-018-0800-6

Abstract

A group G has finite (or Prüfer or special) rank if every finitely generated subgroup of G can be generated by r elements and r is the least integer with this property. The aim of this paper is to prove the following result: assume that G=AB is a group which is the mutually permutable product of the abelian subgroups A and B of Prüfer ranks r and s, respectively. If G is locally finite, then the Prüfer rank of G is at most r+s+3. If G is an arbitrary group, then the Prüfer rank of G is at most r+s+4.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords: Abelian group · Soluble group · Polycyclic group · Rank · Factorisations