# Paper «Finite trifactorised groups and $\pi$-decomposability» published in Bull. Austral. Math. Soc.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

L. S. Kazarin, A. Martínez-Pastor, M. D. Pérez-Ramos.

Finite trifactorised groups and $\pi$-decomposability

Bull. Austral. Math. Soc., 97 (2):218-228, 2018

doi:10.1017/S0004972717001034

Abstract

We derive some structural properties of a trifactorised finite group G = AB = AC = BC, where A, B, and C are subgroups of G, provided that A = Aπ × Aπ’ and B = Bπ × Bπ’ are π-decomposable groups, for a set of primes π.

2010 Mathematics Subject Classification: primary 20D40; secondary 20D20

Keywords: finite group, product of subgroups, π-decomposable group, π-structure.

# Paper “Prime Power Indices in Factorised Groups” published in Mediterr. J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

M. J. Felipe, A. Martínez Pastor, and V. M. Ortiz-Sotomayor

Prime power indices in factorised groups.

Mediterr. J. Math., 14(6):Art. 225, 15, 2017

https://doi.org/10.1007/s00605-016-0987-9

Abstract

Let the group G=AB be the product of the subgroups A and B. We determine some structural properties of G when the p-elements in AB have prime power indices in G, for some prime p. More generally, we also consider the case that all prime power order elements in AB have prime power indices in G. In particular, when G=A=B, we obtain as a consequence some known results.

2010 Mathematics Subject Classification: 20D10, 20D40, 20E45, 20D20

Keywords: Finite groups, Products of groups, Conjugacy classes, Sylow subgroups

# Paper “Square-free class sizes in products of groups” published in J. Algebra

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

M. J. Felipe, A. Martínez Pastor, and V. M. Ortiz-Sotomayor

Square-free class sizes in products of groups

J. Algebra, 491:190–206, 2017

https://doi.org/10.1016/j.jalgebra.2017.08.007

Abstract

We obtain some structural properties of a factorised group G=AB, given that the conjugacy class sizes of certain elements in AB are not divisible by , for some prime p. The case when G=AB is a mutually permutable product is especially considered.

2010 Mathematical Subject Classification: 20D10, 20D40, 20E45

Keywords: Finite groups, Soluble groups, Products of subgroups, Conjugacy classes