Paper “On groups whose subgroups of infinite rank are Sylow permutable” published in Ann. Mat. Pura Appl.

The following paper has been published

El siguiente artículo ha sido publicado

el següent article ha sigut publicat

A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko, and F. Spagnuolo.

On groups whose subgroups of infinite rank are Sylow permutable.

Ann. Mat. Pura Appl. (4), 195(3):717–723, 2016.

https://doi.org/10.1007/s10231-015-0485-z

Abstract

In this paper, we investigate the structure of locally finite groups of infinite section rank (respectively, special rank) whose subgroups of infinite section rank (respectively, special rank) are Sylow permutable, permutable or normal. Some earlier results for locally finite groups appear as consequences of our study.

2010 Mathematics Subject Classification: 20E15, 20F19, 20F22

Keywords: Locally finite group, Section p-rank, Section rank, Special rank, Permutable, Sylow permutable, Normal

Paper «Groups whose primary subgroups are normal sensitive» published in Monatsh. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, and Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monatsh. Math., 175(2) (2014), 175–185

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract

A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H,N=H∩NG. In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

2010 Mathematics subject classification: 20E07; 20E15; 20F22; 20F50

Keywords: Locally finite group; Normal sensitivity; Primary subgroup; PST-group; T-group

Paper «A note on Sylow permutable subgroups of infinite groups» published in J. Algebra

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko

A note on Sylow permutable subgroups of infinite groups

J. Algebra, 398, 156-161 (2014)

http://dx.doi.org/10.1016/j.jalgebra.2013.08.042

Abstract: A subgroup A of a periodic group G is said to be Sylow permutable,
or S-permutable, subgroup of G if A P = P A for all Sylow subgroups
P of G. The aim of this paper is to establish the local nilpotency
of the section A^G /Core_G( A) for an S-permutable subgroup A of a
locally finite group G.
MSC: 20E15, 20F19, 20F22
Keywords: Locally finite group, Hyperfinite group, Sylow permutability, Ascendant subgroup

Paper «Groups whose primary subgroups are normal sensitive» to appear in Monatsh. Math.

The following paper is now available on line. We will announce the publication details.

El siguiente artículo está disponible en línea. Anunciaremos los detalles bibliográficos.

El següent article està disponible en línia. N’anunciarem els detalls bibliogràfics.

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monats. Math.

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract: A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H, N = H ∩ N^G . In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

Keywords: Locally finite group, Normal sensitivity, Primary subgroup, PST-group, T-group

Mathematics Subject Classification (2000):  20E07, 20E15, 20F22, 20F50

Paper «Extension of Schur theorem to groups with a central factor with a bounded section rank» published in J. Algebra

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, S. Camp-Mora, L. A. Kurdachenko, J. Otal

Extension of Schur theorem to groups with a central factor with a bounded section rank

J. Algebra, 393, 1-15 (2013)

http://dx.doi.org/10.1016/j.jalgebra.2013.06.035

Abstract: A well-known result reported by Schur states that the derived subgroup of a group is finite provided its central factor is finite. Here we show that if the p-section rank of the central factor of a locally generalized radical group is bounded, then so is the p-section rank of its derived subgroup. We also give an explicit expression for this bound.

MSC: 20F14, 20F19, 20F99

Keywords: Schur class, Schur multiplier, Special rank of a group, p-section rank of a group, 0-rank of a group, Generalized radical group

Charla Leonid Kurdachenko

May ’13
28
12:00

Leonid KurdachenkoEl profesor Leonid Kurdachenko, de la Universidad Nacional de Dnepropetrovsk (Ucrania), de visita en nuestro departamento, impartirá la charla titulada

Around Schur’s, Baer’s and Neumann’s theorems

el próximo martes 28 de mayo de 2013, a las 12.00, en el seminario del Departament d’Àlgebra (Facultat de Matemàtiques, segundo piso).

Estáis todos invitados.

Visita profesor Leonid Kurdachenko

May ’13May
2729

Leonid KurdachenkoEl profesor Leonid Kurdachenko, catedrático de la Universidad Nacional de Dnepropetrovsk (Ucrania), nos visitará entre el 27 y el 29 de mayo de 2013. El profesor Kurdachenko, colaborador habitual de nuestro equipo de investigación, es miembro del proyecto de investigación «Propiedades aritméticas y estructurales de los grupos, aplicaciones II», coordinado con el nuestro. Es especialista en grupos infinitos, en especial, en grupos lineales y propiedades de inmersión de subgrupos en grupos con propiedades de finitud.