Paper “Some Local Properties Defining T₀-Groups and Related Classes of Groups” published in Publ. Mat.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, and M. F. Ragland

Some local properties defining T0-groups and related classes of groups

Publ. Mat., 60(1):265–272, 2016

http://projecteuclid.org/euclid.pm/1450818490

Abstract

We call G a Hall_χ-group if there exists a normal nilpotent subgroup N of G for which G/N is an χ-group. We call G a T-group provided G/Φ(G) is a T-group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define Hall_χ-groups and T-groups where χ{T, PT, PST}; the classes PT and PST denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

2010 Mathematical Subject Classification: 20D10, 20D20, 20D35

Keywords: Subnormal subgroup, T-group, PST-group, finite solvable group

 

Paper «On Sylow permutable subgroups of finite groups» published in Forum Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Hermann Heineken and Francesca Spagnuolo.
On Sylow permutable subgroups of finite groups.
Forum Math., 29(6):1307-1310, 2017.

Abstract:

A subgroup H of a group G is called Sylow permutable, or S-permutable, in G if H permutes with all Sylow p-subgroups of G for all primes p. A group G is said to be a PST-group if Sylow permutability is a transitive relation in G. We show that a group G which is factorised by a normal subgroup and a subnormal PST-subgroup of odd order is supersoluble. As a consequence, the normal closure S^G of a subnormal PST-subgroup S of odd order of a group G is supersoluble, and the subgroup generated by subnormal PST-subgroups of G of odd order is supersoluble as well.

doi: 10.1515/forum-2016-0262

2020 Mathematics Subject Classification: 20D20, 20D35, 20D40, 20E15.

Keywords: Finite groups, subnormal subgroups, permutability, S-permutability.

Paper “On Hall subnormally embedded subgroups of finite groups” published in Monatsh. Math.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

Adolfo Ballester-Bolinches, John Cossey, and ShouHong Qiao.

On Hall subnormally embedded subgroups of finite groups.

Monatsh. Math., 181(4):753–760, 2016

https://doi.org/10.1007/s00605-015-0838-0

Abstract

A subgroup H of a finite group G is said to be Hall subnormally (respectively normally) embedded in G if there is a subnormal (respectively normal) subgroup N of G such that H is a Hall subgroup of N. The aim of this paper is to characterise the groups G having a Hall subnormally embedded subgroup of order |B| for each subgroup B of G. Some earlier results are consequences of our main theorem.

2010 Mathematical Subject Classification: 20D10 20D20

Keywords: Finite group, Soluble group, Hall subgroup, Subnormal subgroup

Paper “Z-permutable subgroups of finite groups” published in Monatsh. Math.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. A. Heliel, A. Ballester-Bolinches, R. Esteban-Romero, and M. O. Almestady.

Ζ-permutable subgroups of finite groups.

Monatsh. Math., 179(4):523–534, 2016

https://doi.org/10.1007/s00605-015-0756-1

Abstract

Let be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called -permutable if H permutes with all members of . The main goal of this paper is to study the embedding of the -permutable subgroups and the influence of -permutability on the group structure.

2010 Mathematics Subject Classification: 20D10, 20D20, 20D35, 20D40

Keywords: Finite group, p-soluble group, p-supersoluble, ℨ-permutable subgroup, Subnormal subgroup

Paper «On generalised subnormal subgroups of finite groups» published in Math. Nachr.

The paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

has appeared in Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). It is available through

http://dx.doi.org/10.1002/mana.201200029

See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparecido en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparegut en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Al final se’n pot veure el resum.

 

Abstract:

Let F be a formation of finite groups. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. A subgroup U of a finite group G is called a K-F-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or F-normal in Ui, for i = 1, 2, …, n. The K-F-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-F-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; F-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17

 

https://permut.blogs.uv.es/2013/04/02/paper-on-generalised-subnormal-subgroups-of-finite-groups/

Paper «On generalised subnormal subgroups of finite groups» to appear in Math. Nachr.

Mathematische NachrichtenThe paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

will be published in Mathematische Nachrichten. It is available through

http://dx.doi.org/10.1002/mana.201200029

We will inform about the final publication details. See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

será publicado en Mathematische Nachrichten. Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Informaremos sobre los detalles bibliográficos cuando estén disponibles. Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

serà publicat en Mathematische Nachrichten. Ja està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Informarem sobre els detalls bibliogràfics quan estiguen disponibles. Al final es pot veure el resum.

 

Abstract:

Let equation image be a formation of finite groups. A subgroup M of a finite group G is said to be equation image-normal in G if G/CoreG(M) belongs to equation image. A subgroup U of a finite group G is called a K-equation image-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or equation image-normal in Ui, for i = 1, 2, …, n. The K-equation image-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-equation image-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; equation image-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17