Paper «On the Kegel–Wielandt σ‐problem for binary partitions» published in Ann. Mat. Pura Appl.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, S. F. Kamornikov, V. N. Tyutyanov
On the Kegel–Wielandt σ‐problem for binary partitions.
Ann. Mat. Pura Appl., 201:443-451, 2022.

doi: 10.1007/s10231-021-01123-4

Abstract:

Let σ={σ_i: i∈ I} be a partition of the set P of all prime numbers. A subgroup X of a
finite group G is called σ -subnormal in G if there is a chain of subgroups X= X_0⊆ X_1⊆⋯⊆ X_n= G where, for every i= 1,…, n, the subgroup X_{i− 1} normal in X_ i or X_ i/Core_{X_i} (X_{i− 1}) is a σ_j-group for some j∈ I. In the special case that σ is the partition of P into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality. A finite group G is σ-complete if G possesses at least one Hall σ i -subgroup for every i ∈ I , and a subgroup H of G is said to be σ_i-subnormal in G if H ∩ S is a Hall σ_i-subgroup of H for any Hall σ_i-subgroup S of G. Skiba proposes in the Kourovka Notebook the following problem (Question 19.86), that is called the Kegel–Wielandt σ-problem: Is it true that a subgroup H of a σ-complete group G is σ-subnormal in G if H is σ_i-subnormal in G for all i ∈ I? The main goal of this paper is to solve the Kegel–Wielandt σ-problem for binary partitions.

2020 Mathematics Subject Classification: 20D10, 20D20.

Keywords: Finite group; Hall subgroup; σ-subnormal subgroup; factorised group

Paper «On σ-subnormality criteria in finite groups» published in J. Pure Appl. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, S. F. Kamornikov, X. Yi.
On σ-subnormality criteria in finite groups.
J. Pure Appl. Algebra, 226(2):106822, 2022.

doi: 10.1016/j.jpaa.2021.106822

Abstract:

Let σ={σ_i: i∈ I} be a partition of the set P of all prime numbers. A subgroup H of a finite group G is called σ-subnormal in G if there is a chain of subgroups H= H_0⊆ H_1⊆⋯⊆ H_n= G where, for every i= 1,…, n, H_{i− 1} normal in H i or H i/Core_{H_i} (H_{i− 1}) is a σ_j-group for some j∈ I. In the special case that σ is the partition of P into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality. In this paper some σ-subnormality criteria for subgroups of finite groups are studied.

2020 Mathematics Subject Classification: 20D10, 20D20.

Keywords: finite group, σ-nilpotency, σ-subnormal subgroup.

Paper «Generalised mutually permutable products and saturated formations» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, S. Y. Madanha, M. C. Pedraza-Aguilera.
Generalised mutually permutable products and saturated formations.
J. Algebra, 595:434-443, 2022.

doi: 10.1016/j.jalgebra.2021.12.027

Abstract:

We say that a group G = AB is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing AB and B permutes with every subgroup of A containing AB. We prove that some known results for mutually permutable products remain true for weakly mutually permutable ones. Moreover, if G‘ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, we show that G^F = A^FB^F, where is F a saturated formation containing U, the class of supersoluble groups. This generalises the corresponding result on mutually permutable products.

2020 Mathematics Subject Classification: 20D10, 20D20.

Keywords: weakly mutually permutable products, saturated formations, residuals

Paper «Large characteristically simple sections of finite groups» published in Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A. Mat. (RACSAM)

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, R. Esteban-Romero, P. Jiménez-Seral
Large characteristically simple sections of finite groups.
Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A. Mat. (RACSAM), 116, Article number 41, 2022.

doi: 10.1007/s13398-021-01188-z

Abstract:

In this paper we prove that if G is a group for which there are k non-Frattini chief factors isomorphic to a characteristically simple group A, then G has a normal section C/R that is the direct product of k minimal normal subgroups of G/R isomorphic to A. This is a significant extension of the notion of crown for isomorphic chief factors.

2020 Mathematics Subject Classification: 20E34, 20E28, 20D10, 20P05.

Keywords: finite group, maximal subgroup, probabilistic generation, primitive group, crown.

Paper «A Note on a Paper of Aivazidis, Safonova and Skiba» published in Mediterr. J. Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

M. M. Al-Shomrani, Adolfo Ballester-Bolinches, A. A. Heliel.
A Note on a Paper of Aivazidis, Safonova and Skiba.
Mediterr. J. Math, 18: Article number 213, 2021.

doi: 10.1007/s00009-021-01872-9

Abstract:

The main result of this paper states that if F is a subgroup-closed saturated formation of full characteristic, then the F-residual of a K-F-subnormal subgroup S of a finite group G is a large subgroup of G provided that the F-hypercentre of every subgroup X of G containing S is contained in the F-residual of X. This extends a recent result of Aivazidis, Safonova and Skiba.

2020 Mathematics Subject Classification: 20D10, 20D20.

Keywords: finite group, saturated formation, K-F-subnormal subgroup.

Defensa tesi doctoral Neus Fuster i Corral 28/07/2021, 11.00, sala graus «Manuel Valdivia»/en línia

Jul ’21
28
11:00

El proper dijous 28 d’octubre de 2021, a les 11.00, a la sala de graus «Manuel Valdivia» de la Facultat de Ciències Matemàtiques de la Universitat de València (carrer del Doctor Moliner, 50, Burjassot), es procedirà a la defensa de la tesi doctoral de Neus Fuster i Corral, dirigida per Adolfo Ballester Bolinches i Ramon Esteban Romero i amb títol

«Left braces and the Yang-Baxter equation».

Esteu convidats a assistir a aquest acte, que podreu seguir presencialment o connectant-vos a https://links.uv.es/permut/tesiNeusFuster.

Paper «The Structure Group and the Permutation Group of a Set-Theoretic Solution of the Quantum Yang–Baxter Equation» published in Mediterr. J. Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, R. Esteban-Romero, N. Fuster-Corral, H. Meng.
The Structure Group and the Permutation Group of a Set-Theoretic Solution of the Quantum Yang–Baxter Equation.
Mediterr. J. Math, 18: Article number 145, 2021.

doi: 10.1007/s00009-021-01793-7

Abstract:

We describe the left brace structure of the structure group and the permutation group associated with an involutive, non-degenerate set-theoretic solution of the quantum Yang–Baxter equation using the Cayley graph of its permutation group with respect to its natural generating system. We use our descriptions of the additions in both braces to obtain new properties of the structure and the permutation groups and to recover some known properties of these groups in a more transparent way.

2020 Mathematics Subject Classification: 16T25, 05C25, 20F05, 20F65

Keywords: left brace, Yang-Baxter equation, Cayley graph, structure group.

Paper «On finite involutive Yang-Baxter groups» published in Proc. Amer. Math. Soc.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng, A. Ballester-Bolinches, R. Esteban-Romero, and N. Fuster-Corral.
On finite involutive Yang-Baxter groups.
Proc. Amer. Math. Soc., 149(2):793–804, 2021.

doi:10.1090/proc/15283

Abstract

A group G is said to be an involutive Yang-Baxter group, or simply an IYB-group, if it is isomorphic to the permutation group of an involutive, nondegenerate set-theoretic solution of the Yang-Baxter equation. We give new sufficient conditions for a group that can be factorised as a product of two IYB-groups to be an IYB-group. Some earlier results are direct consequences of our main theorem.

2020 Mathematics Subject Classification: Primary 81R50; Secondary 20F29, 20B35, 20F16, 20C05, 16S34, 16T25

Keywords: Finite left brace, Yang-Baxter equation, involutive nondegenerate solutions, involutive Yang-Baxter group

Paper «On finite p-groups of supersoluble type» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, R. Esteban-Romero, H. Meng, and N. Su.
On finite p-groups of supersoluble type.
J. Algebra, 567:1–10, 2021.

doi:10.1016/j.jalgebra.2020.08.025

Abstract

A finite p-group S is said to be of supersoluble type if every fusion system over S is supersoluble. The main aim of this paper is to characterise the finite p-groups of supersoluble type. Abelian and metacyclic p-groups of supersoluble type are completely described. Furthermore, we show that the Sylow p-subgroups of supersoluble type of a finite simple group must be cyclic.

2020 Mathematics Subject Classification: 20D20; 20D15; 20D05

Keywords: finite group; fusion system; supersolubility

Paper «On finite p-groups of supersoluble type» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, R. Esteban-Romero, H. Meng, N. Su
On certain products of permutable subgroups.
J. Algebra, 567, 1-10.

doi:10.1016/j.jalgebra.2020.08.025

Abstract

A finite p-group S is said to be of supersoluble type if every fusion system over S is supersoluble. The main aim of this paper is to characterise the finite p-groups of supersoluble type. Abelian and metacyclic p-groups of supersoluble type are completely described. Furthermore, we show that the Sylow p-subgroups of supersoluble type of a finite simple group must be cyclic.

2020 Mathematics Subject Classification: 20D20, 20D15, 20D05.

Keywords: finite group, fusion system, supersolubility