Paper «Groups whose subgroups satisfy the weak subnormalizer condition» published in Beitr. Algebra Geom.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

R. Esteban Romero, F. de Giovanni, A. Russo.
Groups whose subgroups satisfy the weak subnormalizer condition
Beitr. Algebra Geom., 60(4):645–656, 2019.

doi:10.1007/s13366-019-00448-9

Abstract

A subgroup X of a group G is said to satisfy the weak subnormalizer condition if NG(Y)NG(X) for each non-normal subgroup Y of G such that X≤Y≤NG(X). The behaviour of generalized soluble groups whose (cyclic) subgroups satisfy the weak subnormalizer condition is investigated.

2010 Mathematics Subject Classification: 20E15, 20F16

Keywords: Weak subnormalizer condition, T-group, weakly radical group

Paper «Some characterisations of groups in which normality is transitive relation by means of subgroup embedding properties» published in Int. J. Group Theory

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

Ramón Esteban-Romero and Giovanni Vincenzi.

Some characterisations of groups in which normality is transitive relation by means of subgroup embedding properties

Int. J. Group Th., 7 (2):9-16, 2018

doi:10.22108/ijgt.2017.21214

Abstract

In this survey we highlight the relations between some subgroup embedding properties that characterise groups in which normality is a transitive relation in certain universes of groups with some finiteness properties.

2010 Mathematics Subject Classification: Primary: 20D10. Secondary: 20D30, 20D35, 20F19, 20F24

Keywords: group, subgroup embedding property, T-group, FC∗-group, group without infinite simple sections

Paper «On a class of finite soluble groups» published in J. Group Theory

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, John Cossey, Yangming Li.
On a class of finite soluble groups.
J. Group Theory, 21(5):839-846 2018.

doi: 10.1515/jgth-2018-0015

Abstract:

The aim of this paper is to study the class of finite groups in which every subgroup is self-normalising in its subnormal closure. It is proved that this class is a subgroup-closed formation of finite soluble groups which is not closed under taking Frattini extensions and whose members can be characterised by means of their Carter subgroups. This leads to new characterisations of finite soluble T-, PT- and PST-groups. Finite groups whose p-subgroups, p a prime, are self-normalising in their subnormal closure are also characterised.

Paper “Some Local Properties Defining T₀-Groups and Related Classes of Groups” published in Publ. Mat.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. Ballester-Bolinches, J. C. Beidleman, R. Esteban-Romero, and M. F. Ragland

Some local properties defining T0-groups and related classes of groups

Publ. Mat., 60(1):265–272, 2016

http://projecteuclid.org/euclid.pm/1450818490

Abstract

We call G a Hall_χ-group if there exists a normal nilpotent subgroup N of G for which G/N is an χ-group. We call G a T-group provided G/Φ(G) is a T-group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define Hall_χ-groups and T-groups where χ{T, PT, PST}; the classes PT and PST denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

2010 Mathematical Subject Classification: 20D10, 20D20, 20D35

Keywords: Subnormal subgroup, T-group, PST-group, finite solvable group

 

Paper «Groups whose primary subgroups are normal sensitive» to appear in Monatsh. Math.

The following paper is now available on line. We will announce the publication details.

El siguiente artículo está disponible en línea. Anunciaremos los detalles bibliográficos.

El següent article està disponible en línia. N’anunciarem els detalls bibliogràfics.

Adolfo Ballester-Bolinches, Leonid A. Kurdachenko, Javier Otal, Tatiana Pedraza

Groups whose primary subgroups are normal sensitive

Monats. Math.

http://dx.doi.org/10.1007/s00605-013-0566-2

Abstract: A subgroup H of a group G is said to be normal sensitive in G if for every normal subgroup N of H, N = H ∩ N^G . In this paper we study locally finite groups whose p-subgroups are normal sensitive. We show the connection between these groups and groups in which Sylow permutability is transitive.

Keywords: Locally finite group, Normal sensitivity, Primary subgroup, PST-group, T-group

Mathematics Subject Classification (2000):  20E07, 20E15, 20F22, 20F50

Paper «Algorithms for permutability in finite groups» published in Cent. Eur. J. Math.

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, E. Cosme-Llópez, R. Esteban-Romero

Algorithms for permutability in finite groups

Cent. Eur. J. Math., 11 (11), 1914-1922 (2013).

Abstract: In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

Keywords:  Finite group • Permutable subgroup • S-permutable subgroup • Dedekind group • Iwasawa group • T-group • PT-group • PST-group • Algorithm
Mathematics Subject Classification (2010):  20D10, 20D20, 20-04

http://dx.doi.org/10.2478/s11533-013-0299-4

 

Paper «On generalised subnormal subgroups of finite groups» published in Math. Nachr.

The paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

has appeared in Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). It is available through

http://dx.doi.org/10.1002/mana.201200029

See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparecido en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

ha aparegut en Mathematische Nachrichten, 286, No. 11-12, 1066-1171 (2013). Està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Al final se’n pot veure el resum.

 

Abstract:

Let F be a formation of finite groups. A subgroup M of a finite group G is said to be F-normal in G if G/CoreG(M) belongs to F. A subgroup U of a finite group G is called a K-F-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or F-normal in Ui, for i = 1, 2, …, n. The K-F-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-F-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; F-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17

 

https://permut.blogs.uv.es/2013/04/02/paper-on-generalised-subnormal-subgroups-of-finite-groups/

Paper «On generalised subnormal subgroups of finite groups» to appear in Math. Nachr.

Mathematische NachrichtenThe paper

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

will be published in Mathematische Nachrichten. It is available through

http://dx.doi.org/10.1002/mana.201200029

We will inform about the final publication details. See abstract below.

 

El artículo

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

será publicado en Mathematische Nachrichten. Ya está accesible a través de

http://dx.doi.org/10.1002/mana.201200029

Informaremos sobre los detalles bibliográficos cuando estén disponibles. Véase el resumen al final.

 

L’article

A. Ballester-Bolinches, James Beidleman, A. D. Feldman, M. F. Ragland,

On generalised subnormal subgroups of finite groups

serà publicat en Mathematische Nachrichten. Ja està accessible per mitjà de

http://dx.doi.org/10.1002/mana.201200029

Informarem sobre els detalls bibliogràfics quan estiguen disponibles. Al final es pot veure el resum.

 

Abstract:

Let equation image be a formation of finite groups. A subgroup M of a finite group G is said to be equation image-normal in G if G/CoreG(M) belongs to equation image. A subgroup U of a finite group G is called a K-equation image-subnormal subgroup of G if either U = G or there exist subgroups U = U0U1 ≤ … ≤ Un = G such that Ui − 1 is either normal or equation image-normal in Ui, for i = 1, 2, …, n. The K-equation image-subnormality could be regarded as the natural extension of the subnormality to formation theory and plays an important role in the structural study of finite groups. The main purpose of this paper is to analyse classes of finite groups whose K-equation image-subnormal subgroups are exactly the subnormal ones. Some interesting extensions of well-known classes of groups emerge.

Keywords: Formation; equation image-subnormal Subgroup; Subnormal Subgroup; PST-groups; PT-groups; T-groups

MSC (2010): 20D10; 20D35; 20F17