Paper «On the Prüfer rank of mutually permutable products of abelian groups» published in Ann. Mat. Pura Appl.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, J. Cossey, H. Meng, M. C. Pedraza-Aguilera.
On the Prüfer rank of mutually permutable products of abelian groups
Ann. Mat. Pura Appl. (4), 198(3):811–819, 2019.

doi:10.1007/s10231-018-0800-6

Abstract

A group G has finite (or Prüfer or special) rank if every finitely generated subgroup of G can be generated by r elements and r is the least integer with this property. The aim of this paper is to prove the following result: assume that G=AB is a group which is the mutually permutable product of the abelian subgroups A and B of Prüfer ranks r and s, respectively. If G is locally finite, then the Prüfer rank of G is at most r+s+3. If G is an arbitrary group, then the Prüfer rank of G is at most r+s+4.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords: Abelian group · Soluble group · Polycyclic group · Rank · Factorisations

Paper «On products of generalised supersoluble finite groups» published in Mediterr. J. Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, J. Cossey, H. Meng, M. C. Pedraza-Aguilera.
On products of generalised supersoluble finite groups
Ann. Mat. Pura Appl. (4), 198(3):811–819, 2019.

doi:10.1007/s10231-018-0800-6

Abstract

In this paper, mutually sn-permutable subgroups of groups belonging to a class of generalised supersoluble groups are studied. Some analogs of known theorems on mutually sn-permutable products are established.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords: Finite group, supersoluble group, Sn-permutability, factorisation

Paper «On two questions from the Kourovka Notebook» published in J. Algebra

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

A. Ballester-Bolinches, John Cossey, S. F. Kamornikov, H. Meng.

On two questions from the Kourovka Notebook

J. Algebra, 499:438-449, 2018

https://doi.org/10.1016/j.jalgebra.2017.12.014

Abstract

The aim of this paper is to give answers to some questions concerning intersections of system normalisers and prefrattini subgroups of finite soluble groups raised by the third author, Shemetkov and Vasil’ev in the Kourovka Notebook [10]. Our approach depends on results on regular orbits and it can be also used to extend a result of Mann [9] concerning intersections of injectors associated to Fitting classes.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords: Finite groups. Soluble groups. Formations. Fitting classes. Prefrattini  subgroups. Normalisers. Injectors.

Paper “On Hall subnormally embedded subgroups of finite groups” published in Monatsh. Math.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

Adolfo Ballester-Bolinches, John Cossey, and ShouHong Qiao.

On Hall subnormally embedded subgroups of finite groups.

Monatsh. Math., 181(4):753–760, 2016

https://doi.org/10.1007/s00605-015-0838-0

Abstract

A subgroup H of a finite group G is said to be Hall subnormally (respectively normally) embedded in G if there is a subnormal (respectively normal) subgroup N of G such that H is a Hall subgroup of N. The aim of this paper is to characterise the groups G having a Hall subnormally embedded subgroup of order |B| for each subgroup B of G. Some earlier results are consequences of our main theorem.

2010 Mathematical Subject Classification: 20D10 20D20

Keywords: Finite group, Soluble group, Hall subgroup, Subnormal subgroup

Paper “On the exponent of mutually permutable products of two abelian groups” published in J. Algebra

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

A. Ballester-Bolinches, John Cossey, and M. C. Pedraza-Aguilera.

On the exponent of mutually permutable products of two abelian groups.

J. Algebra, 466:34–43, 2016.

https://doi.org/10.1016/j.jalgebra.2016.05.027

Abstract

In this paper we obtain some bounds for the exponent of a finite group, and its derived subgroup, which is a mutually permutable product of two abelian subgroups. They improve the ones known for products of finite abelian groups, and they are used to derive some interesting structural properties of such products.

2010 Mathematical Subject Classification: 20D10, 20D20

Keywords: Finite group, Abelian group, Exponent, Factorisations, p-Supersolubility, p-Length

Paper “A note on finite groups with the maximal permutiser condition” published in Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

Adolfo Ballester-Bolinches, John Cossey, and ShouHong Qiao.

A note on finite groups with the maximal permutiser condition.

Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM, 110(1):247–250, 2016

https://doi.org/10.1007/s13398-015-0232-8

Abstract

A finite group G is said to satisfy the maximal permutiser condition, or G is an MPC-group, if for any maximal subgroup M of G, there is an element xGM such that G=Mx⟩. In this note, we show that the class of MPC-groups is not residually closed and so it is not a formation. It answers a question posed in Qiao et al. (J Algebra Appl 12(5):1250217, 2013). Following Ballester-Bolinches and Esteban-Romero (Commun Algebra 30(12):5757–5770, 2002), a finite group G is said to be a QP-group if G is soluble and if F is a non-cyclic chief factor of G, then F has order 4 and G induces the full automorphism group in F. We prove that the class of all QP-groups is the unique largest formation contained in the class of all MPC-groups. A detailed description of the MPC-groups is also given.

2010 Mathematics Subject Classification: 20D10, 20D15

Keywords: Finite group, Soluble group, Permutability, Formations

Paper «On the abnormal structure of finite groups» published in Revista Matemática Iberoamericana

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

Adolfo Ballester-Bolinches, John Cossey, Ramón Esteban-Romero

On the abnormal structure of finite groups

Rev. Mat. Iberoamericana., 30, 13-24 (2014)

http://dx.doi.org/10.4171/rmi/767

Abstract: We study finite groups in which every maximal subgroup is supersoluble or normal. Our results answer some questions arising from papers of Asaad and Rose.


MSC: 20D10, 20D05, 20F16
Keywords: Finite group, supersoluble group, maximal subgroup

Paper «Generalised norms in finite soluble groups» published in J. Algebra

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, John Cossey, Liangcai Zhang

Generalised norms in finite soluble groups

J. Algebra, 402, 392-405 (2014)

http://dx.doi.org/10.1016/j.jalgebra.2013.12.012

Abstract: We give a framework for a number of generalisations of Baer’s norm that have appeared recently. For a class C of finite nilpotent groups we define the C-norm κC(G) of a finite group G to be the intersection of the normalisers of the subgroups of G that are not in C. We show that those groups for which the C-norm is not hypercentral have a very restricted structure. The non-nilpotent groups G for which G = κC (G) have been classified for some classes. We give a classification for nilpotent classes closed under subgroups, quotients and direct products of groups of coprime order and show the known classifications can be deduced from our classification.


MSC: 20D10, 20D20, 20D25
Keywords: Finite group, normaliser, norm

Paper «Graphs and classes of finite groups» published in Note Mat.

The following paper has been published.

El siguiente artículo ha sido publicado.

El següent article ha sigut publicat.

A. Ballester-Bolinches, John Cossey, R. Esteban-Romero

Graphs and classes of finite groups

Note Mat., 33 (1), 89-94 (2013)

http://dx.doi.org/10.1285/i15900932v33n1p89

Abstract. There are different ways to associate to a finite group a certain graph. An interesting question is to analyse the relations between the structure of the group, given in group-theoretical terms, and the structure of the graph, given in the language of graph theory. This survey paper presents some contributions to this research line.
Keywords: finite groups, classes of groups, graphs
MSC 2000 classification: primary 20D10, secondary 05C25