Paper «On finite involutive Yang-Baxter groups» published in Proc. Amer. Math. Soc.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng, A. Ballester-Bolinches, R. Esteban-Romero, and N. Fuster-Corral.
On finite involutive Yang-Baxter groups.
Proc. Amer. Math. Soc., 149(2):793–804, 2021.

doi:10.1090/proc/15283

Abstract

A group G is said to be an involutive Yang-Baxter group, or simply an IYB-group, if it is isomorphic to the permutation group of an involutive, nondegenerate set-theoretic solution of the Yang-Baxter equation. We give new sufficient conditions for a group that can be factorised as a product of two IYB-groups to be an IYB-group. Some earlier results are direct consequences of our main theorem.

2020 Mathematics Subject Classification: Primary 81R50; Secondary 20F29, 20B35, 20F16, 20C05, 16S34, 16T25

Keywords: Finite left brace, Yang-Baxter equation, involutive nondegenerate solutions, involutive Yang-Baxter group

Paper «On finite p-groups of supersoluble type» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, R. Esteban-Romero, H. Meng, and N. Su.
On finite p-groups of supersoluble type.
J. Algebra, 567:1–10, 2021.

doi:10.1016/j.jalgebra.2020.08.025

Abstract

A finite p-group S is said to be of supersoluble type if every fusion system over S is supersoluble. The main aim of this paper is to characterise the finite p-groups of supersoluble type. Abelian and metacyclic p-groups of supersoluble type are completely described. Furthermore, we show that the Sylow p-subgroups of supersoluble type of a finite simple group must be cyclic.

2020 Mathematics Subject Classification: 20D20; 20D15; 20D05

Keywords: finite group; fusion system; supersolubility

Paper «On a paper of Beltrán and Shao about coprime action» published in J. Pure Appl. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng and A. Ballester-Bolinches.
On a paper of Beltrán and Shao about coprime action.
J. Pure Appl. Algebra, 224(8):106313, 4, 2020.

doi:10.1016/j.jpaa.2020.106313

Abstract

Assume that A and G are finite groups of coprime orders such that A acts on G via automorphisms. Let p be a prime. The following coprime action version of a well-known theorem of Itô about the structure of a minimal non-p-nilpotent groups is proved: if every maximal A-invariant subgroup of G is p-nilpotent, then G is p-soluble. If, moreover, G is not p-nilpotent, then G must be soluble. Some earlier results about coprime action are consequences of this theorem.

2020 Mathematics Subject Classification: 20D10, 20D25

Keywords: finite groups; coprime action; solubility; p-nilpotency

Paper «On large orbits of supersoluble subgroups of linear groups» published in J. Lond. Math. Soc. (2)

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng, A. Ballester-Bolinches, and R. Esteban-Romero.
On large orbits of supersoluble subgroups of linear groups.
J. Lond. Math. Soc. (2), 101(2):490–504, 2020.

doi:10.1112/jlms.12266

Abstract

We prove that if G is a finite soluble group, V is a finite faithful completely reducible G-module, and H is a supersoluble subgroup of G, then H has at least one regular orbit on VV.

2020 Mathematics Subject Classification: 20C15, 20D10, 20D45

Keywords: linear group, regular orbit, supersoluble group

Paper «On large orbits of actions of finite soluble groups: applications» published in Recent advances in pure and applied mathematics

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Ramon Esteban-Romero, and H. Meng.
On large orbits of actions of finite soluble groups: applications.
Recent advances in pure and applied mathematics. Based on contributions presented at the Second Joint Meeting Spain-Brazil in Mathematics, Cádiz, Spain, December 11–14, 2018, pages 105–113. Cham: Springer, 2020.

doi:10.1007/978-3-030-41321-7_8

Abstract

The main aim of this survey paper is to present two orbit theorems and to show how to apply them to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite soluble groups. We also show how to apply them to solve questions about intersections of some conjugacy families of subgroups of finite soluble groups.

2020 Mathematics Subject Classification: 20C15, 20D10, 20D20, 20D45

Keywords: finite groups, soluble groups, linear groups, regular orbits, formations, prefrattini subgroups, system normalisers

Paper «The number of maximal subgroups and probabilistic generation of finite groups» published in Int. J. Group Theory

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

Adolfo Ballester-Bolinches, Ramón Esteban-Romero, Paz Jiménez-Seral, Hangyang Meng.
The number of maximal subgroups and probabilistic generation of finite groups.
Int. J. Group Theory, 9(1):31–42, 2020.

doi:10.22108/ijgt.2019.114469.1521

Abstract

In this survey we present some significant bounds for the‎ ‎number of maximal subgroups of a given index of a finite group‎. ‎As a‎ ‎consequence‎, ‎new bounds for the number of random‎ ‎generators needed to generate a finite d-generated group with high‎ ‎probability which are significantly tighter than the ones obtained in‎ ‎the paper of Jaikin-Zapirain and Pyber (Random generation of finite‎ ‎and profinite groups and group enumeration‎, Ann. Math.‎, 183 (2011) 769–814) are obtained‎. ‎The results of‎ ‎Jaikin-Zapirain and Pyber‎, ‎as well as other results of Lubotzky‎, ‎Detomi‎, ‎and Lucchini‎, ‎appear as particular cases of our theorems‎.

2020 Mathematics Subject Classification: 20P05

Keywords: finite group; maximal subgroup; probabilistic generation; primitive group

Paper «On large orbits of subgroups of linear groups» published in Trans. Amer. Math. Soc.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng, A. Ballester-Bolinches y R. Esteban-Romero.
On large orbits of subgroups of linear groups.
Trans. Amer. Math. Soc., 372(4):2589-2612, 2019.

doi:10.1090/tran/7639

Abstract

The main aim of this paper is to prove an orbit theorem and to apply it to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite solvable groups.

2010 Mathematics Subject Classification: 20C15, 20D20, 20D45

Keywords: Finite groups, solvable groups, linear groups, regular orbits, representations of groups

Defensa tesi doctoral Hangyang Meng 01/07/2019 12.30

Jul ’19
1
12:30

El proper dilluns 1 de juliol de 2019, a les 12.30, a la sala de graus «Manuel Valdivia» de la Facultat de Ciències Matemàtiques de la Universitat de València es durà a terme la defensa de la tesi doctoral de Hangyang Meng amb títol

Regular orbits of actions of finite soluble groups. Applications

dirigida per Adolfo Ballester Bolinches.
Esteu tots convidats.

Paper «On the Prüfer rank of mutually permutable products of abelian groups» published in Ann. Mat. Pura Appl.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, J. Cossey, H. Meng, M. C. Pedraza-Aguilera.
On the Prüfer rank of mutually permutable products of abelian groups
Ann. Mat. Pura Appl. (4), 198(3):811–819, 2019.

doi:10.1007/s10231-018-0800-6

Abstract

A group G has finite (or Prüfer or special) rank if every finitely generated subgroup of G can be generated by r elements and r is the least integer with this property. The aim of this paper is to prove the following result: assume that G=AB is a group which is the mutually permutable product of the abelian subgroups A and B of Prüfer ranks r and s, respectively. If G is locally finite, then the Prüfer rank of G is at most r+s+3. If G is an arbitrary group, then the Prüfer rank of G is at most r+s+4.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords: Abelian group · Soluble group · Polycyclic group · Rank · Factorisations

Paper «Left braces and the quantum Yang-Baxter equation» published in Proc. Edinburgh Math. Soc.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng, A. Ballester-Bolinches y R. Esteban-Romero.
Left braces and the quantum Yang-Baxter equation.
Proc. Edinburgh Math. Soc., 62(2):595–608, 2019.

doi:10.1017/S0013091518000664

Abstract

Braces were introduced by Rump in 2007 as a useful tool in the study of the set-theoretic solutions of the Yang–Baxter equation. In fact, several aspects of the theory of finite left braces and their applications in the context of the Yang–Baxter equation have been extensively investigated recently. The main aim of this paper is to introduce and study two finite brace theoretical properties associated with nilpotency, and to analyse their impact on the finite solutions of the Yang–Baxter equation.

2010 Mathematics Subject Classification: 26T25, 20F16

Keywords: p-nilpotent group, braces, Yang-Baxter equation