Paper «On the Kegel–Wielandt σ‐problem for binary partitions» published in Ann. Mat. Pura Appl.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, S. F. Kamornikov, V. N. Tyutyanov
On the Kegel–Wielandt σ‐problem for binary partitions.
Ann. Mat. Pura Appl., 201:443-451, 2022.

doi: 10.1007/s10231-021-01123-4

Abstract:

Let σ={σ_i: i∈ I} be a partition of the set P of all prime numbers. A subgroup X of a
finite group G is called σ -subnormal in G if there is a chain of subgroups X= X_0⊆ X_1⊆⋯⊆ X_n= G where, for every i= 1,…, n, the subgroup X_{i− 1} normal in X_ i or X_ i/Core_{X_i} (X_{i− 1}) is a σ_j-group for some j∈ I. In the special case that σ is the partition of P into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality. A finite group G is σ-complete if G possesses at least one Hall σ i -subgroup for every i ∈ I , and a subgroup H of G is said to be σ_i-subnormal in G if H ∩ S is a Hall σ_i-subgroup of H for any Hall σ_i-subgroup S of G. Skiba proposes in the Kourovka Notebook the following problem (Question 19.86), that is called the Kegel–Wielandt σ-problem: Is it true that a subgroup H of a σ-complete group G is σ-subnormal in G if H is σ_i-subnormal in G for all i ∈ I? The main goal of this paper is to solve the Kegel–Wielandt σ-problem for binary partitions.

2020 Mathematics Subject Classification: 20D10, 20D20.

Keywords: Finite group; Hall subgroup; σ-subnormal subgroup; factorised group

Paper «On σ-subnormal subgroups of factorised finite groups» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, and X. Yi.
On σ-subnormal subgroups of factorised finite groups.
J. Algebra, 559:195–202, 2020.

doi:10.1016/j.jalgebra.2020.05.002

Abstract

Let σ = {σi : iI} be a partition of the set ℙ of all prime numbers. A subgroup X of a finite group G is called σsubnormal in G if there is chain of subgroups X = X0X1 ⊆⋯⊆ Xn = G with Xj-1 normal in Xj or Xi/CoreXi(Xi-1) is a σ-group for some iI, 1 ≤ jn. In the special case that σ is the partition of ℙ into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality.

If a finite soluble group G = AB is factorised as the product of the subgroups A and B, and X is a subgroup of G such that X is σ-subnormal in 〈X, Xg〉 for all gAB , we prove that X is σ-subnormal in G. This is an extension of a subnormality criteria due to Maier and Sidki and Casolo.

2020 Mathematics Subject Classification: 20D10, 20D20

Keywords: Finite group; Soluble group; σ-Subnormal subgroup; σ-Nilpotency; Factorised group

Paper «On factorised finite groups» published in Mediterr. J. Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, Y. Li, M. C. Pedraza-Aguilera, Ning Su.
On factorised finite groups.
Mediterr. J. Math., 17(2):Paper No. 65, 7, 2020.

doi:10.1007/s00009-020-1500-1

Abstract

A subgroup H of a finite group G is called ℙ-subnormal in G if either H = G or it is connected to G by a chain of subgroups of prime indices. In this paper, some structural results of finite groups which are factorised as the product of two ℙ-subnormal subgroups is showed.

2020 Mathematics Subject Classification: 20D10, 20D25

Keywords: finite group; factorised group; w-supersoluble group; ℙ-subnormal subgroup

Paper «On finite groups with square-free conjugacy class sizes» published in Int. J. Group Theory

The following paper has been published:

El siguiente artículo ha sido publicado:

El següent article ha sigut publicat:

María José Felipe, Ana Martínez-Pastor, Víctor-Manuel Ortiz-Sotomayor

On finite groups with square-free conjugacy class sizes

Int. J. Group Th., 7 (2):17-24, 2018

doi:10.22108/ijgt.2017.21475

Abstract

We report on finite groups having square-free conjugacy class sizes, in particular in the framework of factorised groups.

2010 Mathematics Subject Classification: Primary: 20E45. Secondary: 20D40, 20D10, 20D20

Keywords: finite group, conjugacy class, factorised group