The following paper has been published
El siguiente artículo ha sido publicado
El següent article ha sigut publicat
A. A. Heliel, A. Ballester-Bolinches, R. Esteban-Romero, and M. O. Almestady.
Ζ-permutable subgroups of finite groups.
Monatsh. Math., 179(4):523–534, 2016
https://doi.org/10.1007/s00605-015-0756-1
Abstract
Let ℨ be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called ℨ-permutable if H permutes with all members of ℨ. The main goal of this paper is to study the embedding of the ℨ-permutable subgroups and the influence of ℨ-permutability on the group structure.
2010 Mathematics Subject Classification: 20D10, 20D20, 20D35, 20D40
Keywords: Finite group, p-soluble group, p-supersoluble, ℨ-permutable subgroup, Subnormal subgroup