Paper “On the supersoluble hypercentre of a finite group” published in Monatsh. Math.

The following paper has been published

El siguiente artículo ha sido publicado

El següent article ha sigut publicat

Liyun Miao, Adolfo Ballester-Bolinches, Ramón Esteban-Romero, and Yangming Li

On the supersoluble hypercentre of a finite group

Monatsh. Math., 184(4):641–648, 2017


A subgroup H of a group G is called Sylow permutable, or S-permutable, in G if H permutes with all Sylow p-subgroups of G for all primes p. A group G is said to be a PST-group if Sylow permutability is a transitive relation in G. We show that a group G which is factorised by a normal subgroup and a subnormal PST-subgroup of odd order is supersoluble. As a consequence, the normal closure S^G of a subnormal PST-subgroup S of odd order of a group G is supersoluble, and the subgroup generated by subnormal PST-subgroups of G of odd order is supersoluble as well.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords: Finite group, p-Supersoluble group, S-semipermutable subgroup