Paper «On finite p-groups of supersoluble type» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, R. Esteban-Romero, H. Meng, N. Su
On certain products of permutable subgroups.
J. Algebra, 567, 1-10.

doi:10.1016/j.jalgebra.2020.08.025

Abstract

A finite p-group S is said to be of supersoluble type if every fusion system over S is supersoluble. The main aim of this paper is to characterise the finite p-groups of supersoluble type. Abelian and metacyclic p-groups of supersoluble type are completely described. Furthermore, we show that the Sylow p-subgroups of supersoluble type of a finite simple group must be cyclic.

2020 Mathematics Subject Classification: 20D20, 20D15, 20D05.

Keywords: finite group, fusion system, supersolubility

Paper «Products of groups and class sizes of π-elements» published in Mediterr. J. Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

M. J. Felipe, A. Martínez-Pastor, V. M. Ortiz-Sotomayor.
Products of groups and class sizes of π-elements.
Mediterr. J. Math., 17(1):Paper No. 15, 20, 2020.

doi:10.1007/s00009-019-1444-5

Abstract

We provide structural criteria for some finite factorised groups G=AB when the conjugacy class sizes in G of certain π-elements in AB are either π-numbers or π′-numbers, for a set of primes π. In particular, we extend for products of groups some earlier results.

2020 Mathematics Subject Classification: 20D10, 20D40, 20E45, 20D20

Keywords: finite group; products of groups; conjugacy classes, π-structure

Paper «On the σ-Length of Maximal Subgroups of Finite σ-Soluble Groups» published in Mathematics

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

Abd El-Rahman Heliel, Mohammed Al-Shomrani, Adolfo Ballester-Bolinches.
On the σ-Length of Maximal Subgroups of Finite σ-Soluble Groups.
Mathematics, 8(12):2165 (4 pages), 2020.

doi:10.3390/math8122165

Abstract

Let σ={σi:iI} be a partition of the set P of all prime numbers and let G be a finite group. We say that G is σ-primary if all the prime factors of |G| belong to the same member of σ. G is said to be σ-soluble if every chief factor of G is σ-primary, and G is σ-nilpotent if it is a direct product of σ-primary groups. It is known that G has a largest normal σ-nilpotent subgroup which is denoted by (G). Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively by F0(G)=1, and Fn+1(G)/Fn(G)=(G/Fn(G)). If G is σ-soluble, there exists a smallest n such that Fn(G)=G. This number n is called the σ-nilpotent length of G and it is denoted by (G). If F is a subgroup-closed saturated formation, we define the σ-F-length (G,F) of G as the σ-nilpotent length of the F-residual GF of G. The main result of the paper shows that if A is a maximal subgroup of G and G is a σ-soluble, then (A,F)=(G,F)−i for some i∈{0,1,2}.

Keywords: finite group; σ-solubility; σ-nilpotency; σ-nilpotent length

Paper «The Dπ-property on products of π-decomposable groups» published in Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

L. S. Kazarin, A. Martínez-Pastor, and M. D. Pérez-Ramos.
The Dπ-property on products of π-decomposable groups.
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115(1):Paper No. 13, 18, 2021.

doi:10.1007/s13398-020-00950-z

Abstract

The aim of this paper is to prove the following result: Let π be a set of odd primes. If the group G = AB is the product of two π-decomposable subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′, then G has a unique conjugacy class of Hall π-subgroups, and any π-subgroup is contained in a Hall π-subgroup (i.e. G satisfies property Dπ).

2020 Mathematics Subject Classification: 20D40; 20D20; 20E32

Keywords: finite groups; product of subgroups; π-structure; simple groups

Talk «Triply factorised groups and skew left braces» at Ischia Online Group Theory Conference (GOThIC) on 19th November, 2020

Nov ’20
19
17:00

The organising committee of the
Ischia Online Group Theory Conference(GOThIC)
is inviting you to a scheduled Zoom meeting.

PLEASE NOTE:

– The TIME OF THE TALK is 17:00 CET = UTC + 1.

– You are welcome to share the Zoom link with other interested
parties, but PLEASE DO NOT POST THE LINK PUBLICLY.

– When joining, please MAKE SURE THAT YOUR NICKNAME
IS YOUR NAME AND SURNAME, or close to it, so that the organisers
can recognise you and let you in

The Ischia Group Theory 2020 Conference
(http://www.dipmat2.unisa.it/ischiagrouptheory/) was planned
for 30 March – 4 April 2020. It has now been postponed.
In the meantime, we are offering a series of online lectures
by leading researchers (https://sites.google.com/unisa.it/e-igt2020/).

TIME: November 19th, 2020 17:00 CET (UTC+1)

COFFEE BREAK: The talk will start at 17:00 CET. The conference room
will open at 16:45 CET for a coffee break
– Bring Your Own tea/coffee mug – biscuits appreciated –
and join us for some smalltalk before the event.

SPEAKER: Ramon Esteban-Romero (Universitat de València)

TITLE: Triply factorised groups and skew left braces

ABSTRACT:

The Yang-Baxter equation is a consistency equation of the statistical mechanics proposed by Yang [6] and Baxter [1] that describes the interaction of many particles in some scattering situations. This equation lays the foundation for the theory of quantum groups and Hopf algebras. During the last years, the study suggested by Drinfeld [2] of the so-called set-theoretic solutions of the Yang-Baxter equation has motivated the appearance of many algebraic structures. Among these structures we find the skew left braces, in troduced by Guarnieri and Vendramin [3] as a generalisation of the structure of left brace defined by Rump [4]. It consists of a set B with two operations + and ·, not necessarily commutative, that give B two structures of group linked by a modified distributive law.

The multiplicative group C = (B, ·) of a skew left brace (B, +, ·) acts on the multiplicative group K = (B, +) by means of an action λ: C −→ Aut(K) given by λ(a)(b) = −a + a · b, for a, b ∈ B. With respect to this action, the identity map δ : C −→ K becomes a derivation or 1-cocycle with respect to λ. In the semidirect product G = [K]C = {(k, c) | k ∈ K, c ∈ C}, there is a diagonal-type subgroup D = {(δ(c), c) | c ∈ C} such that G = KD = CD, K ∩ D = C ∩ D = 1. This approach was presented by Sysak in [5] and motivates the use of techniques of group theory to study skew left braces.

We present in this talk some applications of this approach to obtain some results about skew left braces. These results have been obtained in collaboration with Adolfo Ballester-Bolinches.

Recorded talks: https://sites.google.com/unisa.it/e-igt2020/recorded-talks

Paper «On σ-subnormal subgroups of factorised finite groups» published in J. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

A. Ballester-Bolinches, S. F. Kamornikov, M. C. Pedraza-Aguilera, and X. Yi.
On σ-subnormal subgroups of factorised finite groups.
J. Algebra, 559:195–202, 2020.

doi:10.1016/j.jalgebra.2020.05.002

Abstract

Let σ = {σi : iI} be a partition of the set ℙ of all prime numbers. A subgroup X of a finite group G is called σsubnormal in G if there is chain of subgroups X = X0X1 ⊆⋯⊆ Xn = G with Xj-1 normal in Xj or Xi/CoreXi(Xi-1) is a σ-group for some iI, 1 ≤ jn. In the special case that σ is the partition of ℙ into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality.

If a finite soluble group G = AB is factorised as the product of the subgroups A and B, and X is a subgroup of G such that X is σ-subnormal in 〈X, Xg〉 for all gAB , we prove that X is σ-subnormal in G. This is an extension of a subnormality criteria due to Maier and Sidki and Casolo.

2020 Mathematics Subject Classification: 20D10, 20D20

Keywords: Finite group; Soluble group; σ-Subnormal subgroup; σ-Nilpotency; Factorised group

Paper «Products of finite connected subgroups» published in Mathematics

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

María Pilar Gállego, Peter Hauck, Lev S. Kazarin, Ana Martínez-Pastor, and María Dolores Pérez-Ramos.
Products of finite connected subgroups.
Mathematics, 18(9):1498 (8 pages), 2020.

doi:10.3390/math8091498

Abstract

For a non-empty class of groups L, a finite group G=AB is said to be an L-connected product of the subgroups A and B if ⟨a,b⟩∈L for all aA and bB. In a previous paper, we prove that, for such a product, when L=S is the class of finite soluble groups, then [A,B] is soluble. This generalizes the theorem of Thompson that states the solubility of finite groups whose two-generated subgroups are soluble. In the present paper, our result is applied to extend to finite groups previous research about finite groups in the soluble universe. In particular, we characterize connected products for relevant classes of groups, among others, the class of metanilpotent groups and the class of groups with nilpotent derived subgroup. Additionally, we give local descriptions of relevant subgroups of finite groups.

2020 Mathematics Subject Classification: 20D40, 20E45, 20D20, 20D60

Keywords: finite groups; products of subgroups; two-generated subgroups; L-connection; Fitting classes; Fitting series; formations

Paper «On σ-subnormal closure» published in Comm. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

M. M. Al-Shomrani, A. A. Heliel, and Adolfo Ballester-Bolinches.
On σ-subnormal closure.
Comm. Algebra, 48(8):3624–3627, 2020.

doi:10.1080/00927872.2020.1742348

Abstract

Let σ = {σi : iI} be a partition of the set ℙ of all prime numbers. A subgroup A of a finite group G is called σsubnormal in G if there is chain of subgroups A = A0A1 ⊆⋯⊆ An = G with Aj-1 normal in Aj or Ai/CoreAi(Ai-1) is a σj-group for some jI, 1 ≤ in. In this paper, the description of the unique smallest σ-subnormal subgroup of a σ-soluble group containing a given subgroup is obtained.

2020 Mathematics Subject Classification: 20D10, 20D20

Keywords: Finite group; σ-soluble group; σ-subnormal subgroup

Paper «On a paper of Beltrán and Shao about coprime action» published in J. Pure Appl. Algebra

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

H. Meng and A. Ballester-Bolinches.
On a paper of Beltrán and Shao about coprime action.
J. Pure Appl. Algebra, 224(8):106313, 4, 2020.

doi:10.1016/j.jpaa.2020.106313

Abstract

Assume that A and G are finite groups of coprime orders such that A acts on G via automorphisms. Let p be a prime. The following coprime action version of a well-known theorem of Itô about the structure of a minimal non-p-nilpotent groups is proved: if every maximal A-invariant subgroup of G is p-nilpotent, then G is p-soluble. If, moreover, G is not p-nilpotent, then G must be soluble. Some earlier results about coprime action are consequences of this theorem.

2020 Mathematics Subject Classification: 20D10, 20D25

Keywords: finite groups; coprime action; solubility; p-nilpotency

Paper «On products of groups and indices not divisible by a given prime» published in Monatsh. Math.

The following paper has been published:
El siguiente artículo ha sido publicado:
El següent article ha sigut publicat:

María José Felipe, Lev S. Kazarin, Ana Martínez-Pastor, and Víctor Sotomayor.
On products of groups and indices not divisible by a given prime.
Comm. Algebra, 193(4):811–827, 2020.

doi:10.1007/s00605-020-01446-z

Abstract

Let the group G = AB be the product of subgroups A and B, and let p be a prime. We prove that p does not divide the conjugacy class size (index) of each p-regular element of prime power order xAB if and only if G is p-decomposable, i.e. G=Op(G) × Op’(G).

2020 Mathematics Subject Classification: 20D40, 20E45, 20D20, 20D60

Keywords: Finite groups; products of groups; conjugacy classes; p-structure; prime graph; almost simple groups